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Main themes of the talk

Solutions without symmetry
We derived a new, geometric way of formulating
relativistic Euler flow (joint with Disconzi)
Key point: non-zero vorticity/entropy allowed
Motivation: Christodoulou’s work on irrotational shock
formation and my previous non-relativistic work (with
Luk in barotropic case)
Potential applications: stable shock formation, low
regularity, long-time behavior of solutions, dynamics
with shocks, numerical simulations?
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Relativistic Euler flow in Minkowski space

Aα(~Ψ)∂α~Ψ = 0

~Ψ = (h,u0,u1,u2,u3, s)
h = ln H with H = enthalpy; u =four-velocity;
s =entropy
The system is quasilinear hyperbolic
ηαβuαuβ = −1, η = Minkowski metric
Equation of state p = p(%, s) closes the system
(p =pressure, % =energy density)
We assume c = sound speed :=

√
∂p
∂%
> 0

Two propagation phenomena: sound waves and
transporting of vorticity/entropy
Neither the phenomena nor their coupling are visible
s is crucial for the theory of solutions with shocks
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Geometric tensors associated to the flow

The four-velocity transports vorticity and entropy.

Definition (The four-velocity vectorfield)

uα∂α

The acoustical metric is tied to sound wave propagation.

Definition (The acoustical metric and its inverse)

gαβ(~Ψ) := c−2ηαβ + (c−2 − 1)uαuβ,

(g−1)αβ(~Ψ) = c2(η−1)αβ + (c2 − 1)uαuβ

u is g-timelike and thus transverse to acoustically null
hypersurfaces:

g(u,u) = −1
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Covariant wave operator

Definition (Covariant wave operator)
For scalar-valued functions φ, we define (as usual)

�gφ :=
1√
|detg|

∂α

{√
|detg|(g−1)αβ∂βφ

}
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Additional fluid variables

Definition (The u-orthogonal vorticity of a one-form)

vortα(V ) := −εαβγδuβ∂γVδ

Definition (Vorticity vectorfield)

$α := vortα(Hu) = −εαβγδuβ∂γ(Huδ)

Definition (Entropy gradient one-form)

Sα := ∂αs
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Modified fluid variables

Exhibit improved regularity
Solve PDEs with good quasilinear null structure with
respect to g

Definition (Modified fluid variables)

Cα := vortα($) + c−2εαβγδuβ(∂γh)$δ

+ (θ − θ;h)Sα(∂κuκ) + (θ − θ;h)uα(Sκ∂κh)

+ (θ;h − θ)Sκ((η−1)αλ∂λuκ),

D :=
1
n

(∂κSκ) +
1
n

(Sκ∂κh)− 1
n

c−2(Sκ∂κh)

Temperature θ(h, s) and number density n(h, s)
determined by equation of state
θ;h := ∂

∂hθ
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Null forms relative to g

Definition (Null forms relative to g)

Q(g)(∂φ, ∂φ̃) := (g−1)αβ∂αφ∂βφ̃,

Q(αβ)(∂φ, ∂φ̃) := ∂αφ∂βφ̃− ∂αφ̃∂βφ
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Purpose of new formulation

The new formulation allows for the application of
geometric techniques from mathematical GR and
nonlinear wave equations.

Big new issue compared to waves:
The interaction of wave and transport phenomena,
especially from the perspective of regularity and
decay.
“multiple characteristic speeds”
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A new formulation of relativistic Euler

Theorem (JS with M. Disconzi)

For Ψ ∈ ~Ψ := (h,u0,u1,u2,u3, s), Q := combinations of null
forms, regular solutions satisfy, up to lower-order terms:

�g(~Ψ)Ψ = C +D + Q(∂∂∂~Ψ, ∂∂∂~Ψ),

uκ∂κ$α = ∂∂∂~Ψ,

uκ∂κSα = ∂∂∂~Ψ

Formally, C,D ∼ ∂∂∂∂∂∂~Ψ, but they are actually better from
various points of view. In fact, ∂∂∂$,∂∂∂S are better:

∂α$
α = $ · ∂∂∂~Ψ,

uκ∂κCα = Q(∂∂∂$,∂∂∂~Ψ) + Q(∂∂∂S, ∂∂∂~Ψ)

+ ∂∂∂~Ψ · C + ∂∂∂~Ψ · D + Q(∂∂∂~Ψ, ∂∂∂~Ψ)

uκ∂κD = Q(∂∂∂S, ∂∂∂~Ψ) + Q(∂∂∂~Ψ, ∂∂∂~Ψ),

vortα(S) = 0
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L2 regularity via div-curl-transport

In non-relativistic flow, the div-curl part is along Σt .
In contrast, the relativistic equations ∂α$α = RHS
and uκ∂κCα = RHS are spacetime div-curl-transport
systems for ∂∂∂$.
In practice, one needs L2 regularity for ∂∂∂$ along Σt .
To achieve this, one also considers the PDEs
uκ∂κ$α = RHS and uα$α = 0 (and thus
uα∂∂∂$α = −(∂∂∂uα)$α).
The latter two equations allow one to independently
control “timelike parts” of ∂∂∂$.
Then the “timelike part” of ∂∂∂$ can be “excised” from
the spacetime div-curl-transport systems to derive a
spatial div-curl-transport system along Σt .
Can be done while preserving the null structure.
Similar remarks hold for S.
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Some potential applications
The new formulation opens the door for several key
applications with vorticity and entropy, some of which have
been achieved in the non-relativistic case:

Stable shock formation without symmetry (à la
Christodoulou and my work with Luk in the
non-relativistic case). Null structure is crucial.
Thesis work in progress by Sifan Wu: low regularity
sound waves (à la my work with Disconzi, Luo,
Mazzone and Wang’s work in the non-relativistic
case). Null structure not needed.
Small-time extension of the solution past the first
shock (Christodoulou solved the Shock Development
Problem in the irrotational case). Null structure is
crucial.
Long-time dynamics of solutions with shocks. This is
completely open away from symmetry. Null structure
is crucial.
Numerical simulations?
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Mazzone and Wang’s work in the non-relativistic
case). Null structure not needed.
Small-time extension of the solution past the first
shock (Christodoulou solved the Shock Development
Problem in the irrotational case). Null structure is
crucial.
Long-time dynamics of solutions with shocks. This is
completely open away from symmetry. Null structure
is crucial.
Numerical simulations?



Intro New Formulation Nonlinear Geometric Optics Applications to Shock Waves Looking Forward

Some potential applications
The new formulation opens the door for several key
applications with vorticity and entropy, some of which have
been achieved in the non-relativistic case:

Stable shock formation without symmetry (à la
Christodoulou and my work with Luk in the
non-relativistic case). Null structure is crucial.
Thesis work in progress by Sifan Wu: low regularity
sound waves (à la my work with Disconzi, Luo,
Mazzone and Wang’s work in the non-relativistic
case). Null structure not needed.
Small-time extension of the solution past the first
shock (Christodoulou solved the Shock Development
Problem in the irrotational case). Null structure is
crucial.
Long-time dynamics of solutions with shocks. This is
completely open away from symmetry. Null structure
is crucial.
Numerical simulations?



Intro New Formulation Nonlinear Geometric Optics Applications to Shock Waves Looking Forward

Some potential applications
The new formulation opens the door for several key
applications with vorticity and entropy, some of which have
been achieved in the non-relativistic case:

Stable shock formation without symmetry (à la
Christodoulou and my work with Luk in the
non-relativistic case). Null structure is crucial.
Thesis work in progress by Sifan Wu: low regularity
sound waves (à la my work with Disconzi, Luo,
Mazzone and Wang’s work in the non-relativistic
case). Null structure not needed.
Small-time extension of the solution past the first
shock (Christodoulou solved the Shock Development
Problem in the irrotational case). Null structure is
crucial.
Long-time dynamics of solutions with shocks. This is
completely open away from symmetry. Null structure
is crucial.
Numerical simulations?



Intro New Formulation Nonlinear Geometric Optics Applications to Shock Waves Looking Forward

Some potential applications
The new formulation opens the door for several key
applications with vorticity and entropy, some of which have
been achieved in the non-relativistic case:

Stable shock formation without symmetry (à la
Christodoulou and my work with Luk in the
non-relativistic case). Null structure is crucial.
Thesis work in progress by Sifan Wu: low regularity
sound waves (à la my work with Disconzi, Luo,
Mazzone and Wang’s work in the non-relativistic
case). Null structure not needed.
Small-time extension of the solution past the first
shock (Christodoulou solved the Shock Development
Problem in the irrotational case). Null structure is
crucial.
Long-time dynamics of solutions with shocks. This is
completely open away from symmetry. Null structure
is crucial.
Numerical simulations?



Intro New Formulation Nonlinear Geometric Optics Applications to Shock Waves Looking Forward

Some potential applications
The new formulation opens the door for several key
applications with vorticity and entropy, some of which have
been achieved in the non-relativistic case:

Stable shock formation without symmetry (à la
Christodoulou and my work with Luk in the
non-relativistic case). Null structure is crucial.
Thesis work in progress by Sifan Wu: low regularity
sound waves (à la my work with Disconzi, Luo,
Mazzone and Wang’s work in the non-relativistic
case). Null structure not needed.
Small-time extension of the solution past the first
shock (Christodoulou solved the Shock Development
Problem in the irrotational case). Null structure is
crucial.
Long-time dynamics of solutions with shocks. This is
completely open away from symmetry. Null structure
is crucial.
Numerical simulations?



Intro New Formulation Nonlinear Geometric Optics Applications to Shock Waves Looking Forward

Some potential applications
The new formulation opens the door for several key
applications with vorticity and entropy, some of which have
been achieved in the non-relativistic case:

Stable shock formation without symmetry (à la
Christodoulou and my work with Luk in the
non-relativistic case). Null structure is crucial.
Thesis work in progress by Sifan Wu: low regularity
sound waves (à la my work with Disconzi, Luo,
Mazzone and Wang’s work in the non-relativistic
case). Null structure not needed.
Small-time extension of the solution past the first
shock (Christodoulou solved the Shock Development
Problem in the irrotational case). Null structure is
crucial.
Long-time dynamics of solutions with shocks. This is
completely open away from symmetry. Null structure
is crucial.
Numerical simulations?



Intro New Formulation Nonlinear Geometric Optics Applications to Shock Waves Looking Forward

Some potential applications
The new formulation opens the door for several key
applications with vorticity and entropy, some of which have
been achieved in the non-relativistic case:

Stable shock formation without symmetry (à la
Christodoulou and my work with Luk in the
non-relativistic case). Null structure is crucial.
Thesis work in progress by Sifan Wu: low regularity
sound waves (à la my work with Disconzi, Luo,
Mazzone and Wang’s work in the non-relativistic
case). Null structure not needed.
Small-time extension of the solution past the first
shock (Christodoulou solved the Shock Development
Problem in the irrotational case). Null structure is
crucial.
Long-time dynamics of solutions with shocks. This is
completely open away from symmetry. Null structure
is crucial.
Numerical simulations?



Intro New Formulation Nonlinear Geometric Optics Applications to Shock Waves Looking Forward

Some potential applications
The new formulation opens the door for several key
applications with vorticity and entropy, some of which have
been achieved in the non-relativistic case:

Stable shock formation without symmetry (à la
Christodoulou and my work with Luk in the
non-relativistic case). Null structure is crucial.
Thesis work in progress by Sifan Wu: low regularity
sound waves (à la my work with Disconzi, Luo,
Mazzone and Wang’s work in the non-relativistic
case). Null structure not needed.
Small-time extension of the solution past the first
shock (Christodoulou solved the Shock Development
Problem in the irrotational case). Null structure is
crucial.
Long-time dynamics of solutions with shocks. This is
completely open away from symmetry. Null structure
is crucial.
Numerical simulations?



Intro New Formulation Nonlinear Geometric Optics Applications to Shock Waves Looking Forward

Some potential applications
The new formulation opens the door for several key
applications with vorticity and entropy, some of which have
been achieved in the non-relativistic case:

Stable shock formation without symmetry (à la
Christodoulou and my work with Luk in the
non-relativistic case). Null structure is crucial.
Thesis work in progress by Sifan Wu: low regularity
sound waves (à la my work with Disconzi, Luo,
Mazzone and Wang’s work in the non-relativistic
case). Null structure not needed.
Small-time extension of the solution past the first
shock (Christodoulou solved the Shock Development
Problem in the irrotational case). Null structure is
crucial.
Long-time dynamics of solutions with shocks. This is
completely open away from symmetry. Null structure
is crucial.
Numerical simulations?



Intro New Formulation Nonlinear Geometric Optics Applications to Shock Waves Looking Forward

Some potential applications
The new formulation opens the door for several key
applications with vorticity and entropy, some of which have
been achieved in the non-relativistic case:

Stable shock formation without symmetry (à la
Christodoulou and my work with Luk in the
non-relativistic case). Null structure is crucial.
Thesis work in progress by Sifan Wu: low regularity
sound waves (à la my work with Disconzi, Luo,
Mazzone and Wang’s work in the non-relativistic
case). Null structure not needed.
Small-time extension of the solution past the first
shock (Christodoulou solved the Shock Development
Problem in the irrotational case). Null structure is
crucial.
Long-time dynamics of solutions with shocks. This is
completely open away from symmetry. Null structure
is crucial.
Numerical simulations?



Intro New Formulation Nonlinear Geometric Optics Applications to Shock Waves Looking Forward

Nonlinear geometric optics

Potential applications would require nonlinear
geometric optics.
New formulation allows for sharp implementation of
nonlinear geometric optics.
Implemented via an acoustic eikonal function U:

(g−1)αβ(~Ψ)∂αU∂βU = 0, ∂tU > 0

Level sets CU of U are g-null hypersurfaces.
Play a critical role in many delicate local and global
results for wave equations.
The regularity theory of U is difficult, tensorial,
influenced by the Euler solution, especially the
vorticity and entropy.
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g-null hypersurfaces close to plane symmetry

L

X̆

Y

L
X̆

Y

C t
0C t

UC t
1

µ ≈ 1

µ small
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Acoustic null frame

An acoustic null frame {L,L,e1,e2}:

eA

L L

CU

Figure: Null (with respect to g) frame
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Christodoulou’s sharp picture of relativistic
Euler shock formation (irrotational case)

H
singular

H

∂−H

C
regular

Figure: The maximal development
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Model problem
g(Ψ) = −dt ⊗ dt + (1 + Ψ)−2 ∑3

a=1 dxa ⊗ dxa

�g(Ψ)Ψ = 0

In (t , x1) plane symmetry, define null vectorfields
L := ∂t + (1 + Ψ)∂1, L := ∂t − (1 + Ψ)∂1.

The wave equation can be expressed as:

L(LΨ) =
1

2(1 + Ψ)
(LΨ)2︸ ︷︷ ︸

causes Riccati-type blowup

+
5

2(1 + Ψ)
(LΨ)LΨ,

L(LΨ) = − 1
2(1 + Ψ)

(LΨ)2 +
5

2(1 + Ψ)
(LΨ)LΨ
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Eikonal functions regularize the problem

Define eikonal functions U,U by:

LU = 0, LU = 0,
U(0, x1) = −x1, U(0, x1) = x1.

Then in (U,U) coordinates, the wave equation becomes

∂

∂U
∂

∂U
Ψ =

2
(1 + Ψ)

∂

∂U
Ψ · ∂

∂U
Ψ

=⇒ For “many” data, solution remains smooth in (U,U)
coordinates!
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Singularity is visible in standard coordinates

Set µ := 1
LU so that µL = ∂

∂U . Set µ := 1
LU so that µL = ∂

∂U .

µ ↓ 0 =⇒ integral curves of L intersect =⇒ shock

Evolution equations for µ,µ:

∂

∂U
µ = −

µ

(1 + Ψ)

∂

∂U
Ψ︸ ︷︷ ︸

Can drive µ ↓ 0

− µ

(1 + Ψ)

∂

∂U
Ψ,

∂

∂U
µ = − µ

(1 + Ψ)

∂

∂U
Ψ−

µ

(1 + Ψ)

∂

∂U
Ψ

LΨ = 1
µ
∂
∂U Ψ =⇒ |LΨ| → ∞ when µ ↓ 0

LΨ = 1
µ
∂
∂U Ψ =⇒ |LΨ| remains bounded if µ > 0
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Regularizing the singularity

U ≡ const

µ = 0

t

x1

U

U

µ = 0

{t = 0}
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Significance of null forms

For null forms QNull , in plane symmetry,
�g(Ψ)Ψ = QNull(∂Ψ, ∂Ψ) can be written as

∂

∂U
∂

∂U
Ψ = f (Ψ)

∂

∂U
Ψ · ∂

∂U
Ψ.

This equation can be treated as before.

In contrast, for a typical quadratic term
QBad (∂Ψ, ∂Ψ) = ∂Ψ · ∂Ψ, �g(Ψ)Ψ = QBad (∂Ψ, ∂Ψ) can be
written as

∂

∂U
∂

∂U
Ψ =

µ

µ
f (Ψ)

∂

∂U
Ψ · ∂

∂U
Ψ + · · ·

The bad factor of 1
µ

spoils the previous analysis as µ ↓ 0
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Shocks without symmetry
Alinhac (late 90’s): quasilinear wave equations. Used
nonlinear geometric optics and Nash–Moser to follow
solution to the time of the first shock in the case of an
isolated and “generic” first singularity.
Christodoulou (2007): used nonlinear geometric
optics to give a complete description of maximal
development for all irrotational relativistic Euler
solutions near constant states. No Nash–Moser.
Around 2016: Speck, Miao–Yu, Christodoulou–Miao,
Speck–Holzegel–Luk–Wong, Miao extended
Christodoulou’s framework to other wave
equations/regimes.
Luk–Speck (2018): Extended Christodoulou’s
framework to compressible Euler with vorticity.
Buckmaster–Shkoller–Vicol: Sharp modulation
parameter approach for following compressible Euler
solutions to the time of the first shock in the case of an
isolated and “generic” first singularity. No
Nash–Moser.
Christodoulou (2019): solved restricted shock
development problem.
Merle–Raphael–Rodnianski–Szeftel (2020): Implosion
singularities in non-relativistic case.



Intro New Formulation Nonlinear Geometric Optics Applications to Shock Waves Looking Forward

Shocks without symmetry
Alinhac (late 90’s): quasilinear wave equations. Used
nonlinear geometric optics and Nash–Moser to follow
solution to the time of the first shock in the case of an
isolated and “generic” first singularity.
Christodoulou (2007): used nonlinear geometric
optics to give a complete description of maximal
development for all irrotational relativistic Euler
solutions near constant states. No Nash–Moser.
Around 2016: Speck, Miao–Yu, Christodoulou–Miao,
Speck–Holzegel–Luk–Wong, Miao extended
Christodoulou’s framework to other wave
equations/regimes.
Luk–Speck (2018): Extended Christodoulou’s
framework to compressible Euler with vorticity.
Buckmaster–Shkoller–Vicol: Sharp modulation
parameter approach for following compressible Euler
solutions to the time of the first shock in the case of an
isolated and “generic” first singularity. No
Nash–Moser.
Christodoulou (2019): solved restricted shock
development problem.
Merle–Raphael–Rodnianski–Szeftel (2020): Implosion
singularities in non-relativistic case.



Intro New Formulation Nonlinear Geometric Optics Applications to Shock Waves Looking Forward

Shocks without symmetry
Alinhac (late 90’s): quasilinear wave equations. Used
nonlinear geometric optics and Nash–Moser to follow
solution to the time of the first shock in the case of an
isolated and “generic” first singularity.
Christodoulou (2007): used nonlinear geometric
optics to give a complete description of maximal
development for all irrotational relativistic Euler
solutions near constant states. No Nash–Moser.
Around 2016: Speck, Miao–Yu, Christodoulou–Miao,
Speck–Holzegel–Luk–Wong, Miao extended
Christodoulou’s framework to other wave
equations/regimes.
Luk–Speck (2018): Extended Christodoulou’s
framework to compressible Euler with vorticity.
Buckmaster–Shkoller–Vicol: Sharp modulation
parameter approach for following compressible Euler
solutions to the time of the first shock in the case of an
isolated and “generic” first singularity. No
Nash–Moser.
Christodoulou (2019): solved restricted shock
development problem.
Merle–Raphael–Rodnianski–Szeftel (2020): Implosion
singularities in non-relativistic case.



Intro New Formulation Nonlinear Geometric Optics Applications to Shock Waves Looking Forward

Shocks without symmetry
Alinhac (late 90’s): quasilinear wave equations. Used
nonlinear geometric optics and Nash–Moser to follow
solution to the time of the first shock in the case of an
isolated and “generic” first singularity.
Christodoulou (2007): used nonlinear geometric
optics to give a complete description of maximal
development for all irrotational relativistic Euler
solutions near constant states. No Nash–Moser.
Around 2016: Speck, Miao–Yu, Christodoulou–Miao,
Speck–Holzegel–Luk–Wong, Miao extended
Christodoulou’s framework to other wave
equations/regimes.
Luk–Speck (2018): Extended Christodoulou’s
framework to compressible Euler with vorticity.
Buckmaster–Shkoller–Vicol: Sharp modulation
parameter approach for following compressible Euler
solutions to the time of the first shock in the case of an
isolated and “generic” first singularity. No
Nash–Moser.
Christodoulou (2019): solved restricted shock
development problem.
Merle–Raphael–Rodnianski–Szeftel (2020): Implosion
singularities in non-relativistic case.



Intro New Formulation Nonlinear Geometric Optics Applications to Shock Waves Looking Forward

Shocks without symmetry
Alinhac (late 90’s): quasilinear wave equations. Used
nonlinear geometric optics and Nash–Moser to follow
solution to the time of the first shock in the case of an
isolated and “generic” first singularity.
Christodoulou (2007): used nonlinear geometric
optics to give a complete description of maximal
development for all irrotational relativistic Euler
solutions near constant states. No Nash–Moser.
Around 2016: Speck, Miao–Yu, Christodoulou–Miao,
Speck–Holzegel–Luk–Wong, Miao extended
Christodoulou’s framework to other wave
equations/regimes.
Luk–Speck (2018): Extended Christodoulou’s
framework to compressible Euler with vorticity.
Buckmaster–Shkoller–Vicol: Sharp modulation
parameter approach for following compressible Euler
solutions to the time of the first shock in the case of an
isolated and “generic” first singularity. No
Nash–Moser.
Christodoulou (2019): solved restricted shock
development problem.
Merle–Raphael–Rodnianski–Szeftel (2020): Implosion
singularities in non-relativistic case.



Intro New Formulation Nonlinear Geometric Optics Applications to Shock Waves Looking Forward

Shocks without symmetry
Alinhac (late 90’s): quasilinear wave equations. Used
nonlinear geometric optics and Nash–Moser to follow
solution to the time of the first shock in the case of an
isolated and “generic” first singularity.
Christodoulou (2007): used nonlinear geometric
optics to give a complete description of maximal
development for all irrotational relativistic Euler
solutions near constant states. No Nash–Moser.
Around 2016: Speck, Miao–Yu, Christodoulou–Miao,
Speck–Holzegel–Luk–Wong, Miao extended
Christodoulou’s framework to other wave
equations/regimes.
Luk–Speck (2018): Extended Christodoulou’s
framework to compressible Euler with vorticity.
Buckmaster–Shkoller–Vicol: Sharp modulation
parameter approach for following compressible Euler
solutions to the time of the first shock in the case of an
isolated and “generic” first singularity. No
Nash–Moser.
Christodoulou (2019): solved restricted shock
development problem.
Merle–Raphael–Rodnianski–Szeftel (2020): Implosion
singularities in non-relativistic case.



Intro New Formulation Nonlinear Geometric Optics Applications to Shock Waves Looking Forward

Shocks without symmetry
Alinhac (late 90’s): quasilinear wave equations. Used
nonlinear geometric optics and Nash–Moser to follow
solution to the time of the first shock in the case of an
isolated and “generic” first singularity.
Christodoulou (2007): used nonlinear geometric
optics to give a complete description of maximal
development for all irrotational relativistic Euler
solutions near constant states. No Nash–Moser.
Around 2016: Speck, Miao–Yu, Christodoulou–Miao,
Speck–Holzegel–Luk–Wong, Miao extended
Christodoulou’s framework to other wave
equations/regimes.
Luk–Speck (2018): Extended Christodoulou’s
framework to compressible Euler with vorticity.
Buckmaster–Shkoller–Vicol: Sharp modulation
parameter approach for following compressible Euler
solutions to the time of the first shock in the case of an
isolated and “generic” first singularity. No
Nash–Moser.
Christodoulou (2019): solved restricted shock
development problem.
Merle–Raphael–Rodnianski–Szeftel (2020): Implosion
singularities in non-relativistic case.



Intro New Formulation Nonlinear Geometric Optics Applications to Shock Waves Looking Forward

Shocks without symmetry
Alinhac (late 90’s): quasilinear wave equations. Used
nonlinear geometric optics and Nash–Moser to follow
solution to the time of the first shock in the case of an
isolated and “generic” first singularity.
Christodoulou (2007): used nonlinear geometric
optics to give a complete description of maximal
development for all irrotational relativistic Euler
solutions near constant states. No Nash–Moser.
Around 2016: Speck, Miao–Yu, Christodoulou–Miao,
Speck–Holzegel–Luk–Wong, Miao extended
Christodoulou’s framework to other wave
equations/regimes.
Luk–Speck (2018): Extended Christodoulou’s
framework to compressible Euler with vorticity.
Buckmaster–Shkoller–Vicol: Sharp modulation
parameter approach for following compressible Euler
solutions to the time of the first shock in the case of an
isolated and “generic” first singularity. No
Nash–Moser.
Christodoulou (2019): solved restricted shock
development problem.
Merle–Raphael–Rodnianski–Szeftel (2020): Implosion
singularities in non-relativistic case.



Intro New Formulation Nonlinear Geometric Optics Applications to Shock Waves Looking Forward

Shocks without symmetry
Alinhac (late 90’s): quasilinear wave equations. Used
nonlinear geometric optics and Nash–Moser to follow
solution to the time of the first shock in the case of an
isolated and “generic” first singularity.
Christodoulou (2007): used nonlinear geometric
optics to give a complete description of maximal
development for all irrotational relativistic Euler
solutions near constant states. No Nash–Moser.
Around 2016: Speck, Miao–Yu, Christodoulou–Miao,
Speck–Holzegel–Luk–Wong, Miao extended
Christodoulou’s framework to other wave
equations/regimes.
Luk–Speck (2018): Extended Christodoulou’s
framework to compressible Euler with vorticity.
Buckmaster–Shkoller–Vicol: Sharp modulation
parameter approach for following compressible Euler
solutions to the time of the first shock in the case of an
isolated and “generic” first singularity. No
Nash–Moser.
Christodoulou (2019): solved restricted shock
development problem.
Merle–Raphael–Rodnianski–Szeftel (2020): Implosion
singularities in non-relativistic case.



Intro New Formulation Nonlinear Geometric Optics Applications to Shock Waves Looking Forward

Shocks without symmetry
Alinhac (late 90’s): quasilinear wave equations. Used
nonlinear geometric optics and Nash–Moser to follow
solution to the time of the first shock in the case of an
isolated and “generic” first singularity.
Christodoulou (2007): used nonlinear geometric
optics to give a complete description of maximal
development for all irrotational relativistic Euler
solutions near constant states. No Nash–Moser.
Around 2016: Speck, Miao–Yu, Christodoulou–Miao,
Speck–Holzegel–Luk–Wong, Miao extended
Christodoulou’s framework to other wave
equations/regimes.
Luk–Speck (2018): Extended Christodoulou’s
framework to compressible Euler with vorticity.
Buckmaster–Shkoller–Vicol: Sharp modulation
parameter approach for following compressible Euler
solutions to the time of the first shock in the case of an
isolated and “generic” first singularity. No
Nash–Moser.
Christodoulou (2019): solved restricted shock
development problem.
Merle–Raphael–Rodnianski–Szeftel (2020): Implosion
singularities in non-relativistic case.



Intro New Formulation Nonlinear Geometric Optics Applications to Shock Waves Looking Forward

Basic proof strategy in 1 + 3 dimensions

Supplement t and U with geometric angular
coordinates ϑ ∈ S2

Prove that the solution remains smooth relative to
(t ,U, ϑ) coordinates
Recover the blowup as a degeneracy between
(t ,U, ϑ) and rectangular coordinates

The degeneracy is signified by the vanishing of the
inverse foliation density:

µ = − 1
(g−1)αβ∂αt∂βU

> 0
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Some key difficulties in 1 + 3 dimensions

All known well-posedness results rely on L2-based
Sobolev spaces; i.e., one must derive energy
estimates
Energy estimates are very difficult in regions where
µ ↓ 0
High-order geometric energies can blow up:
EHigh(t) . (minΣt µ)−P , P ≈ 10
The possible high-order energy blowup makes it
difficult to show that the solution’s mid-order
geometric derivatives are bounded
The regularity theory of U, vorticity, entropy are
difficult, tied in part to the need for elliptic estimates
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Directions to consider

Does Einstein–Euler exhibit similar good structures?
Shock formation for Einstein–Euler
Same questions for MHD, viscous relativistic Euler
Same questions for more complicated multiple speed
systems: elasticity, crystal optics, nonlinear
electromagnetism,..., which take the form:

hαβAB(∂Φ)∂α∂βΦB = 0

Would require the development of new geometry.
Solve past the shock, locally (shock development
problem à la Christodoulou)
Long-time behavior of solutions with shocks (at least
in a perturbative regime)
Long-time behavior of vorticity
Useful for numerical simulations?
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